Downloading...
 
product-image
 

2,6 V bis 5,5 V, 2 A, 0,3 MHz bis 2,4 MHz Synchron-Abwärtswandler - BD90521MUV-C

Der BD90521MUV-C ist ein synchroner Abwärtswandler, der im Strommodus betrieben wird. Er kann mit einer maximalen Frequenz von 2,4 MHz betrieben werden und externe Teile wie Induktionsspulen reduzieren. Er liefert einen maximalen Ausgangsstrom von 2 A mit integriertem Pch und Nch Ausgang MOSFET. Die Ausgangsspannung und die Schwingfrequenz können mit externen Widerständen angepasst und mit einer externen Taktfrequenz synchronisiert werden.

Teilenummer
Status
Gehäuse
Einheitenmenge
Minimale Gehäusemenge
Gehäusetyp
RoHS
BD90521MUV-CE2 Active VQFN20SV4040 2500 2500 Taping Ja
 
Spezifikationen:
Grade Automotive
ch 1
Integrated FET / Controller Integrated FET
Buck / Boost / Buck-Boost / Inverting Buck
Synchronous / Nonsynchronous Nonsynchronous
Vin1(Min.)[V] 2.6
Vin1(Max.)[V] 5.5
Vout1(Min.)[V] 0.6
Vout1(Max.)[V] 5.0
Iout1(Max.)[A] 2.0
SW frequency(Max.)[MHz] 2.4
Light Load mode No
EN Yes
PGOOD Yes
Operating Temperature (Min.)[°C] -40
Operating Temperature (Max.)[°C] 125
Eigenschaften:
    • AEC-Q100 Qualified
    • Up to 2.4MHz movement
    • Excellent Load Response by Current Mode Control
    • Built-in Pch/Nch Output MOSFET.
    • Frequency Synchronization with External Clock.
    • Output Error Monitor Terminal (PGOOD Terminal)
    • Adjustable Output Voltage and Oscillation Frequency by External Resistors.
    • Built-in Self-Reset Type Overcurrent Protection.
    • Built-in Output Overvoltage/Short Circuit Detection.
    • Built-in Temperature Protection (TSD) and UVLO.
 
 
IN VERBINDUNG STEHENDE PRODUKT
Weitere neue/aktualisierte Produkte im Zusammenhang mit Energieverwaltung / Power Management
TEILENUMMER Produktname Gehäuse Datenblatt Lieferbare Bestände
BD90521EFV-C 2,6 V bis 5,5 V, 2 A, 0,3 MHz bis 2,4 MHz Synchron-Abwärtswandler HTSSOP-B20   Kaufen
BD90541MUV-C 2,6 V bis 5,5 V, 4 A, 0,3 MHz bis 2,4 MHz Synchron-Abwärtswandler VQFN20SV4040   Kaufen
Neue Produkte:
 
 
Technische Daten
Capacitor Calculation for Buck converter IC

This application note explains the calculation of external capacitor value for buck converter IC circuit.

Inductor Calculation for Buck converter IC

This application note covers the steps required in choosing the inductor and to calculate the value used in buck regulator IC circuits.

Resistor Value Table to set Output Voltage of Buck Converter IC

This Application Note offers reference table to easily set resistor values for output voltage with various internal reference voltages VREF.

Thermal Resistance

The definition and how to use thermal resistance and thermal characterization parameter of packages for ROHM’s integrated circuit are described in this application note.

PCB Layout Techniques of Buck Converter

Major problems that arise from in appropriate layout may cause increase in noise superposed by output and switching signal, the deterioration of regulator, and also lack of stability...

The Important Points of Multi-layer Ceramic Capacitor Used in Buck Converter circuit

Using unmatched MLCC may not obtain required target characteristics for power supply circuit and may cause abnormal operation. This application note explains the important points while using MLCC.

Calculation of Power Loss (Synchronous)

This application note describes how to obtain the power loss required to calculate the temperature of a semiconductor device. Temperature control is important to ensuring product reliability.

Thermal Resistance

The definition and how to use thermal resistance and thermal characterization parameter of packages for ROHM’s integrated circuit are described in this application note.

Considerations for Power Inductors Used for Buck Converters

This application note explains the features and things to consider when shopping for power inductors.

Snubber Circuit for Buck Converter IC

In buck converter ICs, many high-frequency noises are generated at switch nodes. A snubber circuit provides one way of eliminating such harmonic noise. This application note explains how to set up the RC snubber circuits.

Efficiency of Buck Converter

This application note explains power loss factors and methods for calculating them. It also explains how the relative importance of power loss factors depends on the specifications of the switching power source.

Measurement Method for Phase Margin with Frequency Response Analyzer (FRA)

This application note introduces a method for easily measuring the phase margin with a Frequency Response Analyzer (FRA) made by NF Corporation.