Downloading...
 
product-image
 

7,5 V bis 18 V, 6 A Integrierter MOSFET 1-Kanal Synchron-Invers-DC/DC-Wandler - BD95861MUV

BD95861MUV ist ein synchroner Abwärtswandler mit einem Kanal, der Ausgangsspannung (0,8 V bis 5,5 V) im Eingangsspannungsbereich (7,5 V bis 18 V) erzeugen kann. Durch die integrierten N-MOSFET-Leistungstransistoren lässt sich beim platzsparenden Schaltregler eine hohe Effizienz erzielen. Die H3Reg™-Technologie des ICs ist ein ROHM-Steuermodus zur permanenten Einschaltung, der ein schnelles Einschwingen bei Laständerungen ohne externe Kompensationskomponenten ermöglicht. Weiterhin verfügt er über eine feste Soft-Start-Funktion, eine Power-Good-Funktion sowie Kurzschluss- und Überspannungsschutz mit zeitgebundener Sperrfunktion. Der BD95861MUV wurde zur Energieversorgung digitaler AV-Ausrüstung entwickelt.
Evaluationsplatine kaufen

* Dieses Produkt entspricht der STANDARD-Güte und wird nicht für Fahrzeugteile empfohlen.
Teilenummer
Status
Gehäuse
Einheitenmenge
Minimale Gehäusemenge
Gehäusetyp
RoHS
BD95861MUV-E2 Active VQFN024V4040 2500 2500 Taping Ja
 
Spezifikationen:
Grade Standard
ch 1
Integrated FET / Controller Integrated FET
Buck / Boost / Buck-Boost / Inverting Buck
Synchronous / Nonsynchronous Synchronous
Vin1(Min.)[V] 4.5
Vin1(Max.)[V] 18.0
Vout1(Min.)[V] 0.8
Vout1(Max.)[V] 5.5
Iout1(Max.)[A] 6.0
SW frequency(Max.)[MHz] 0.8
Light Load mode No
EN Yes
PGOOD No
Operating Temperature (Min.)[°C] -20
Operating Temperature (Max.)[°C] 100
Eigenschaften:
  • ・Umschaltfrequenz: 500 kHz bis 800 kHz (abhängig von den Eingangs- und Ausgangsbedingungen)
    ・Eingebaute Leistungswiderstände MOSFET High-Side Nch FET ON: 50mΩ(typ.) Low-Side Nch FET ON-Widerstand: 30mΩ (Typ.)
    ・Schnelles Einschwingverhalten dank der H3Reg-Steuerungl
    ・Überspannungsschutz (OCP) – auf Taktbasis
    ・Thermische Abschaltung (TSD)
    ・Abschaltung bei Unterspannung (UVLO))
    ・Kurzschlussschutz (SCP)
    ・Überspannungsschutz (OVP)
    ・Fester Soft-Start (1 msec; typ)
    ・Power-Good-Funktion
 
 
IN VERBINDUNG STEHENDE PRODUKT
Weitere neue/aktualisierte Produkte im Zusammenhang mit Energieverwaltung / Power Management
TEILENUMMER Produktname Gehäuse Datenblatt Lieferbare Bestände
BD9S300MUF-C 2.7V to 5.5V Input, 3A Integrated MOSFET Single Synchronous Buck DC/DC Converter For Automotive VQFN16FV3030   Anfrage
BD9E104FJ 7.0 V to 26.0 V Input, 1 A Integrated MOSFET Single Synchronous Buck DC/DC Converter SOP-J8   Anfrage
BD9V101MUF-LB 16V to 60V, 1A 1ch 2.1MHz Synchronous Buck Converter Integrated FET VQFN24FV4040   Kaufen
BD70522GUL Nano Energy™ - Ultra Low Iq Buck Converter For Low Power Applications VCSP50L1C   Kaufen
BD9E103FJ 7V to 28V Input, 1.5A Integrated MOSFET Single Synchronous Buck DC/DC Converter SOP-J8   Kaufen
BD9S200MUF-C 2.7V to 5.5V Input, 2A Integrated MOSFET Single Synchronous Buck DC/DC Converter For Automotive VQFN16FV3030   Kaufen
Neue Produkte:
 
 
Technische Daten
Evaluation Board User's Guide

Evaluation Board for ROHM's BD95861MUV 1ch Synchronous Buck Converter with Integrated 6A MOSFET

Reference Circuits and Bomlist

Reference Circuits and Bomlist

Capacitor Calculation for Buck converter IC

This application note explains the calculation of external capacitor value for buck converter IC circuit.

Inductor Calculation for Buck converter IC

This application note covers the steps required in choosing the inductor and to calculate the value used in buck regulator IC circuits.

Resistor Value Table to set Output Voltage of Buck Converter IC

This Application Note offers reference table to easily set resistor values for output voltage with various internal reference voltages VREF.

Thermal Resistance

The definition and how to use thermal resistance and thermal characterization parameter of packages for ROHM’s integrated circuit are described in this application note.

PCB Layout Techniques of Buck Converter

Major problems that arise from in appropriate layout may cause increase in noise superposed by output and switching signal, the deterioration of regulator, and also lack of stability...

The Important Points of Multi-layer Ceramic Capacitor Used in Buck Converter circuit

Using unmatched MLCC may not obtain required target characteristics for power supply circuit and may cause abnormal operation. This application note explains the important points while using MLCC.

Calculation of Power Loss (Synchronous)

This application note describes how to obtain the power loss required to calculate the temperature of a semiconductor device. Temperature control is important to ensuring product reliability.

Thermal Resistance

The definition and how to use thermal resistance and thermal characterization parameter of packages for ROHM’s integrated circuit are described in this application note.

Considerations for Power Inductors Used for Buck Converters

This application note explains the features and things to consider when shopping for power inductors.

Snubber Circuit for Buck Converter IC

In buck converter ICs, many high-frequency noises are generated at switch nodes. A snubber circuit provides one way of eliminating such harmonic noise. This application note explains how to set up the RC snubber circuits.

Efficiency of Buck Converter

This application note explains power loss factors and methods for calculating them. It also explains how the relative importance of power loss factors depends on the specifications of the switching power source.

Measurement Method for Phase Margin with Frequency Response Analyzer (FRA)

This application note introduces a method for easily measuring the phase margin with a Frequency Response Analyzer (FRA) made by NF Corporation.