BD90521MUV-C
2,6 V bis 5,5 V, 2 A, 0,3 MHz bis 2,4 MHz Synchron-Abwärtswandler

Der BD90521MUV-C ist ein synchroner Abwärtswandler, der im Strommodus betrieben wird. Er kann mit einer maximalen Frequenz von 2,4 MHz betrieben werden und externe Teile wie Induktionsspulen reduzieren. Er liefert einen maximalen Ausgangsstrom von 2 A mit integriertem Pch und Nch Ausgang MOSFET. Die Ausgangsspannung und die Schwingfrequenz können mit externen Widerständen angepasst und mit einer externen Taktfrequenz synchronisiert werden.

Produktdetails

 
Teilenummer | BD90521MUV-CE2
Status | Aktiv
Gehäuse | VQFN20SV4040
Einheitenmenge | 2500
Minimale Gehäusemenge | 2500
Gehäusetyp | Taping
RoHS | Ja

Spezifikationen:

Grade

Automotive

Common Standard

AEC-Q100 (Automotive Grade)

ch

1

Integrated FET / Controller

Integrated FET

Topology

Buck

Synchronous / Nonsynchronous

Non-synchronous

Vin1(Min.)[V]

2.6

Vin1(Max.)[V]

5.5

Vout1(Min.)[V]

0.6

Vout1(Max.)[V]

5.0

Iout1(Max.)[A]

2.0

SW frequency(Max.)[MHz]

2.4

Light Load mode

No

EN

Yes

PGOOD

Yes

Operating Temperature (Min.)[°C]

-40

Operating Temperature (Max.)[°C]

125

Eigenschaften:

  • AEC-Q100 Qualified
  • Up to 2.4MHz movement
  • Excellent Load Response by Current Mode Control
  • Built-in Pch/Nch Output MOSFET.
  • Frequency Synchronization with External Clock.
  • Output Error Monitor Terminal (PGOOD Terminal)
  • Adjustable Output Voltage and Oscillation Frequency by External Resistors.
  • Built-in Self-Reset Type Overcurrent Protection.
  • Built-in Output Overvoltage/Short Circuit Detection.
  • Built-in Temperature Protection (TSD) and UVLO.

Ressourcen entwerfen

 

Unterlagen

White Paper

  • Cutting-Edge Web Simulation Tool “ROHM Solution Simulator” Capable of Complete Circuit Verification of Power Devices and Driver ICs

Technische Artikel

Schematic Design & Verification

  • Calculation of Power Dissipation in Switching Circuit
  • Considering Input Filter to Reduce Conducted Emissions by DCDC Converter
  • Considering Polarity of Power Inductor to Reduce Radiated Emission of DC-DC converter
  • Method for Monitoring Switching Waveform
  • PCB Layout Techniques of Buck Converter
  • Phase Compensation Design for Current Mode Buck Converter
  • Bootstrap Circuit in the Buck Converter
  • Method for Determining Constants of
  • Power Supply Sequence Circuit with General Purpose Power Supply IC
  • Suppression Method of Switching Noise Using Linear Regulator and Low Pass Filter
  • Measurement Method for Phase Margin with Frequency Response Analyzer (FRA)
  • Usage of SPICE Macromodel for DC/DC
  • Snubber Circuit for Buck Converter IC
  • Efficiency of Buck Converter
  • Calculation of Power Loss (Synchronous)
  • Inductor Calculation for Buck converter IC
  • Considerations for Power Inductors Used for Buck Converters
  • Capacitor Calculation for Buck converter IC
  • The Important Points of Multi-layer Ceramic Capacitor Used in Buck Converter circuit
  • Resistor Value Table to set Output Voltage of Buck Converter IC
  • Importance of Probe Calibration When Measuring Power: Deskew
  • Impedance Characteristics of Bypass Capacitor

Thermal Design

  • Notes for Temperature Measurement Using Thermocouples
  • Two-Resistor Model for Thermal Simulation
  • Notes for Temperature Measurement Using Forward Voltage of PN Junction
  • Thermal Resistance
  • Precautions When Measuring the Rear of the Package with a Thermocouple

Design Tools

2D/3D/CAD

  • VQFN20SV4040 Footprint / Symbol

Packaging & Qualität

Package Information

  • Package Information
  • Anti-Whisker formation

Manufacturing Data

  • Factory Information

Environmental Data

  • UL94 Flame Classifications of Mold Compound
  • Compliance with the ELV directive
  • REACH SVHC Non-use Declaration
  • RoHS Comission Delegated Directive

Export Information

  • The Export Control Order
  • Export Administration Regulations(EAR)